Deutsche Version |
We are a 70's 80's 90's and current cover band. 1 / +532: 2018-05-02: tests: tegra: Add VIC03 support: Thierry Reding: 5-1 / +786: 2018-05-02: tests: tegra: Add VIC support: Thierry Reding: 7-2 / +334: 2018-05-02: tegra: Add PRIME support helpers: Thierry Reding: 2-0 / +65: 2018-05-02: tegra: Add flink helpers: Thierry Reding: 2-0 / +53: 2018-05-02: tegra: Extract common buffer object.
Cross section is just a two-dimensional view of a slice through an object. An often asked question: How can you convert the diameter of a round wire d = 2 × r to the circle cross section surface or the cross-section area A (slice plane) to the cable diameter d? Why is the diameter value greater than the area value? Because that's not the same. Resistance varies inversely with the cross-sectional area of a wire. The required cross-section of an electrical line depends on the following factors: 1) Rated voltage. Net form. (Three-phase (DS) / AC (WS)) 2) Fuse - Upstream backup = Maximum permissible current (Amp) 3) On schedule to be transmittedpower (kVA) 4) Cable length in meters (m) 5) Permissible voltage drop (% of the rated voltage) 6) Line material. Copper (Cu) or aluminum (Al) |
The used browser does not support JavaScript. You will see the program but the function will not work. |
Free sound processing software. The 'unit' is usually millimeters but it can also be inches, feet, yards, meters (metres),
or centimeters, when you take for the area the square of that measure.
Litz wire (stranded wire) consisting of many thin wires need a 14 % larger diameter compared to a solid wire.
Cross section is an area. Diameter is a linear measure. That cannot be the same. The cable diameter in millimeters is not the cable cross-section in square millimeters. |
The cross section or the cross sectional area is the area of such a cut. It need not necessarily have to be a circle. Commercially available wire (cable) size as cross sectional area: 0.75 mm2, 1.5 mm2, 2.5 mm2, 4 mm2, 6 mm2, 10 mm2, 16 mm2. |
There are four factors that affect the resistance of a conductor: 1) the cross sectional area of a conductor A, calculated from the diameter d 2) the length of the conductor 3) the temperature in the conductor 4) the material constituting the conductor |
There is no exact formula for the minimum wire size from the maximum amperage. It depends on many circumstances, such as for example, if the calculation is for DC, AC or even for three-phase current, whether the cable is released freely, or is placed under the ground. Also, it depends on the ambient temperature, the allowable current density, and the allowable voltage drop, and whether solid or litz wire is present. And there is always the nice but unsatisfactory advice to use for security reasons a thicker and hence more expensive cable. Common questions are about the voltage drop on wires. |
Voltage drop Δ V
The voltage drop formula with the specific resistance (resistivity) ρ (rho) is:
I = Current in ampere l = Wire (cable) length in meters (times 2, because there is always a return wire) ρ = rho, electrical resistivity (also known as specific electrical resistance or volume resistivity) of copper = 0.01724 ohm×mm2/m (also Ω×m) (Ohms for l = 1 m length and A = 1 mm2 cross section area of the wire)ρ = 1 / σ A = Cross section area in mm2 σ = sigma, electrical conductivity (electrical conductance) of copper = 58 S·m/mm2 |
|
The derived SI unit of electrical resistivity ρ is Ω ×m, shortened from the clear Ω ×mm² / m.
The reciprocal of electrical resistivity is electrical conductivity.
Electrical conductor | Electrical conductivity Electrical conductance | Electrical resistivity Specific resistance |
silver | σ = 62 S·m/mm² | ρ = 0.0161 Ohm∙mm²/m |
copper | σ = 58 S·m/mm² | ρ = 0.0172 Ohm∙mm²/m |
gold | σ= 41 S·m/mm² | ρ = 0.0244 Ohm∙mm²/m |
aluminium | σ = 36 S·m/mm² | ρ = 0.0277 Ohm∙mm²/m |
constantan | σ= 2.0 S·m/mm² | ρ = 0.5000 Ohm∙mm²/m |
Launchcontrol 1 38 1 (1061) download free. Difference between electrical resistivity and electrical conductivity
The conductance in siemens is the reciprocal of the resistance in ohms. |
To use the calculator, simply enter a value. The calculator works in both directions of the ↔ sign. |
The value of the electrical conductivity (conductance) and the specific electrical resistance (resistivity) is a temperature dependent material constant. Mostly it is given at 20 or 25°C. |
Populous the beginning mac. Resistance = resistivity x length / area
The specific resistivity of conductors changes with temperature. In a limited temperature range it is approximately linear: where α is the temperature coefficient, T is the temperature and T0 is any temperature, such as T0 = 293.15 K = 20°C at which the electrical resistivity ρ (T0) is known. |
Convert resistance to electrical conductance
Conversion of reciprocal siemens to ohms
1 ohm [Ω] = 1 / siemens [1/S]
1 siemens [S] = 1 / ohm [1/Ω]
To use the calculator, simply enter a value. The calculator works in both directions of the ↔ sign. |
Swinsian 1 10 11 – music manager and player. 1 millisiemens = 0.001 mho = 1000 ohms
Mathematically, conductance is the reciprocal, or inverse, of resistance: The symbol for conductance is the capital letter 'G' and the unit is the mho, which is 'ohm' spelled backwards. Later, the unit mho was replaced by the unit Siemens − abbreviated with the letter 'S'. |
Table of typical loudspeaker cables
Cable diameter d | 0.798 mm | 0.977 mm | 1.128 mm | 1.382 mm | 1.784 mm | 2.257 mm | 2.764 mm | 3.568 mm |
Cable nominal cross section A | 0.5 mm2 | 0.75 mm2 | 1.0 mm2 | 1.5 mm2 | 2.5 mm2 | 4.0 mm2 | 6.0 mm2 | 10.0 mm2 |
Maximum electrical current | 3 A | 7.6 A | 10.4 A | 13.5 A | 18.3 A | 25 A | 32 A | - |
Always consider, the cross section must be made larger with higher power and higher length of
the cable, but also with lesser impedance. Here is a table to tell the possible power loss.
Cable length in m | Section in mm2 | Resistance in ohm | Power loss at | Damping factor at | ||
Impedance 8 ohm | Impedance 4 ohm | Impedance 8 ohm | Impedance 4 ohm | |||
1 | 0.75 | 0.042 | 0.53% | 1.05% | 98 | 49 |
1.50 | 0.021 | 0.31% | 0.63% | 123 | 62 | |
2.50 | 0.013 | 0.16% | 0.33% | 151 | 75 | |
4.00 | 0.008 | 0.10% | 0.20% | 167 | 83 | |
2 | 0.75 | 0.084 | 1.06% | 2.10% | 65 | 33 |
1.50 | 0.042 | 0.62% | 1.26% | 85 | 43 | |
2.50 | 0.026 | 0.32% | 0.66% | 113 | 56 | |
4.00 | 0.016 | 0.20% | 0.40% | 133 | 66 | |
5 | 0.75 | 0.210 | 2.63% | 5.25% | 32 | 16 |
1.50 | 0.125 | 1.56% | 3.13% | 48 | 24 | |
2.50 | 0.065 | 0.81% | 1.63% | 76 | 38 | |
4.00 | 0.040 | 0.50% | 1.00% | 100 | 50 | |
10 | 0.75 | 0.420 | 5.25% | 10.50% | 17 | 9 |
1.50 | 0.250 | 3.13% | 6.25% | 28 | 14 | |
2.50 | 0.130 | 1.63% | 3.25% | 47 | 24 | |
4.00 | 0.080 | 1.00% | 2.00% | 67 | 33 | |
20 | 0.75 | 0.840 | 10.50% | 21.00% | 9 | 5 |
1.50 | 0.500 | 6.25% | 12.50% | 15 | 7 | |
2.50 | 0.260 | 3.25% | 6.50% | 27 | 13 | |
4.00 | 0.160 | 2.00% | 4.00% | 40 | 20 |
The damping factor values show, what remains of an accepted damping factor of 200
depending on the cable length, the cross section, and the impedance of the loudspeaker.
Conversion and calculation of cable diameter to AWG
and AWG to cable diameter in mm - American Wire Gauge
The gauges we most commonly use are even numbers, such as 18, 16, 14, etc. If you get an answer that is odd, such as 17, 19, etc., use the next lower even number. AWG stands for American Wire Gauge and refers to the strength of wires. These AWG numbers show the diameter and accordingly the cross section as a code. They are only used in the USA. Sometimes you find AWG numbers also in catalogues and technical data in Europe. |
American Wire Gauge - AWG Chart
AWG number | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diameter in inch | 0.0016 | 0.0018 | 0.0020 | 0.0022 | 0.0024 | 0.0027 | 0.0031 | 0.0035 | 0.0040 | 0.0045 | 0.0050 | 0.0056 | 0.0063 |
Diameter (Ø) in mm | 0.04 | 0.05 | 0.05 | 0.06 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 | 0.11 | 0.13 | 0.14 | 0.16 |
Cross section in mm2 | 0.0013 | 0.0016 | 0.0020 | 0.0025 | 0.0029 | 0.0037 | 0.0049 | 0.0062 | 0.0081 | 0.010 | 0.013 | 0.016 | 0.020 |
AWG number | 33 | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 |
Diameter in inch | 0.0071 | 0.0079 | 0.0089 | 0.0100 | 0.0113 | 0.0126 | 0.0142 | 0.0159 | 0.0179 | 0.0201 | 0.0226 | 0.0253 | 0.0285 |
Diameter (Ø) in mm | 0.18 | 0.20 | 0.23 | 0.25 | 0.29 | 0.32 | 0.36 | 0.40 | 0.45 | 0.51 | 0.57 | 0.64 | 0.72 |
Cross section in mm2 | 0.026 | 0.032 | 0.040 | 0.051 | 0.065 | 0.080 | 0.10 | 0.13 | 0.16 | 0.20 | 0.26 | 0.32 | 0.41 |
AWG number | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
Diameter in inch | 0.0319 | 0.0359 | 0.0403 | 0.0453 | 0.0508 | 0.0571 | 0.0641 | 0.0719 | 0.0808 | 0.0907 | 0.1019 | 0.1144 | 0.1285 |
Diameter (Ø) in mm | 0.81 | 0.91 | 1.02 | 1.15 | 1.29 | 1.45 | 1.63 | 1.83 | 2.05 | 2.30 | 2.59 | 2.91 | 3.26 |
Cross section in mm2 | 0.52 | 0.65 | 0.82 | 1.0 | 1.3 | 1.7 | 2.1 | 2.6 | 3.3 | 4.2 | 5.3 | 6.6 | 8.4 |
AWG number | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 (1/0) (0) | 00 (2/0) (-1) | 000 (3/0) (-2) | 0000 (4/0) (-3) | 00000 (5/0) (-4) | 000000 (6/0) (-5) |
Diameter in inch | 0.1443 | 0.1620 | 0.1819 | 0.2043 | 0.2294 | 0.2576 | 0.2893 | 0.3249 | 0.3648 | 0.4096 | 0.4600 | 0.5165 | 0.5800 |
Diameter (Ø) in mm | 3.67 | 4.11 | 4.62 | 5.19 | 5.83 | 6.54 | 7.35 | 8.25 | 9.27 | 10.40 | 11.68 | 13.13 | 14.73 |
Cross section in mm2 | 10.6 | 13.3 | 16.8 | 21.1 | 26.7 | 33.6 | 42.4 | 53.5 | 67.4 | 85.0 | 107.2 | 135.2 | 170.5 |
back | Search Engine | home |
When it comes to your brand vs the competition, does customer reality match your perception?
Ethnography: Spending quality time with the people who matter most to you, to understand what matters most to them
Understanding what makes your brand strong, and what can make it stronger
Helping ideas become products, and helping products get to market quickly and successfully
Following the 10 basic rules of Product Proposition development. Post-Its included
What's so hard about making things easier? We employ design thinking to help brands surprise and delight. Always